主な論文

Combined Drug-Resistance Mutations Substantially Enhance Enzyme Production in Paenibacillus agaridevorans
Journal of Bacteriology 2018
Author:Funane K, Tanaka Y, Hosaka T, Murakami K, Miyazaki T, Shiwa Y, Gibu S, Inaoka T, Kasahara K, Fujita N, Yoshikawa H, Hiraga Y, Ochi K

 

A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2)
Antonie van Leeuwenhoek 2018
Author:Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T

 

抗生物質ホルミシスの理解と応用.保坂毅日本生物工学会誌北里大学特別栄誉教授大村智先生ノーベル賞特集『微生物由来天然物の実用化と未来』),94(7),399-400,(2016年6月)

放線菌における抗生物質ホルミシス効果による二次代謝活性化Activation of secondary metabolism by the hormetic effects of antibiotics in streptomycetes).保坂毅バイオサイエンスとインダストリー,74() ,516-518,(2016年11月)

Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp.
Applied and Environmental Microbiology , 81:2869ー3879(2015)
Author:Imai Y., Sato S., Tanaka Y., Ochi K., and Hosaka T.

 

放線菌の潜在能力発現に関わる薬剤耐性変異の特性解析と抗生物質発掘への応用.保坂毅.日本放線菌学会誌28:9−14(2014)

New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Ochi K. and Hosaka T. Applied Microbiology and Biotechnology 97:87-98 (2013).

 

Heterologous expression of plant RelA/SpoT homolog results in increased stress tolerance in Saccharomyces cerevisiae by accumulating the bacterial alarmone ppGpp. Ochi K., Nishizawa T., Inaoka T., Yamada Y., Hashimoto K., Hosaka T., Okamoto S., Ozeki Y. Microbiology 158: 2213-2224 (2012).

 

Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. Imai Y., Fujiwara T., Ochi K. and Hosaka T. The Journal of Antibiotics 65: 323-326 (2012).

 

放線菌の転写及び翻訳系の改変による潜在能力の開発と抗生物質の探索. 保坂毅今井優藤原達也. 信州大学農学部紀要 48: 9-152012.

 

Rare earth elements activate the secondary metabolite-biosynthesis gene clusters in Streptomyces coelicolor A3(2). Tanaka Y., Hosaka T. and Ochi K. The Journal of Antibiotics 63: 477-481 (2010).

 

微生物の「休眠遺伝子」を目覚めさせて新抗生物質を発見. 越智幸三保坂毅亀山真由美村松秀行村上果菜鶴海泰久小谷真也吉田充藤江昭彦. 農林水産技術研究ジャーナル 33: 22-252010.

 

微生物の「休眠遺伝子」覚醒技術の開発と産業展開. 越智幸三保坂毅田中幸徳. バイオサイエンスとバイオインダストリー 67: 413-4172009.

 

Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Hosaka T., Ohnishi-Kameyama M., Muramatsu H., Murakami K., Tsurumi Y., Kodani S., Yoshida M., Fujie A. and Ochi K. Nature Biotechnology 27: 462-464 (2009).

 

Bacterial alarmone, guanosine 5’-diphosphate 3’-diphosphate (ppGpp), predominantly binds the beta' subunit of plastid-encoded plastid RNA polymerase in chloroplasts. Sato M., Takahashi K., Ochiai Y., Hosaka T., Ochi K. and Nabeta K. Chembiochem 10: 1227-1233 (2009).

 

Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Wang G., Hosaka T. and Ochi K. Applied and Environmental Microbiology 74: 2834-40 (2008).

 

リボソーム工学による微生物からの有用物質発見. 保坂毅王国君岡本晋越智幸三. 月刊バイオインダストリー 24: 59-662007.

 

Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). Nishimura K., Hosaka T., Tokuyama S., Okamoto S. and Ochi K. Journal of Bacteriology 189: 3876-3883 (2007).

 

Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. Nishimura K., Johansen S. K., Inaoka T., Hosaka T., Tokuyama S., Tahara Y., Okamoto S., Kawamura F., Douthwaite S. and Ochi K. Journal of Bacteriology 189: 6068-6073 (2007).

 

Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Hosaka T., Xu J. and Ochi K. Molecular Microbiology 61: 883-897 (2006).  Cover article

 

EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). Saito N., Xu J., Hosaka T., Okamoto S., Aoki H., Bibb M. J., and Ochi K. Journal of Bacteriology 188: 4952-4961 (2006).

 

Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. Kasai K., Nishizawa T., Takahashi K., Hosaka T., Aoki H. and Ochi K. Journal of Bacteriology 188: 7111-7122(2006).

 

Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Kurosawa K., Hosaka T., Tamehiro N., Inaoka T. and Ochi K. Applied and Environmental Microbiology 72: 71-77 (2006).

 

Ribosome engineering and secondary metabolite production. Ochi K., Okamoto S., Tozawa Y., Inaoka T., Hosaka T., Xu J., and Kurosawa K. Advances in Applied Microbiology 56: 155-842004.

 

放線菌を利用して多量の抗生物質をつくる. 保坂毅,為広紀正,越智幸三. 化学と生物 42: 636-638 2004.

 

The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in Escherichia coli. Hosaka T., Tamehiro N., Chumpolkulwong N., Hori-Takemoto C., Shirouzu M., Yokoyama S. and Ochi K. Molecular Genetics and Genomics 271: 317-324 (2004).

 

Structural basis for transcription regulation by alarmone ppGpp. Artsimovitch I., Patlan V., Sekine S., Vassylyeva M. N., Hosaka T., Ochi K., Yokoyama S. and Vassylyev D. G. Cell 117: 299-310 (2004).

 

Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. Chumpolkulwong N., Hori-Takemoto C., Hosaka T., Inaoka T., Kigawa T., Shirouzu M., Ochi K. and Yokoyama S. European Journal of Biochemistry 271: 1127-1134 (2004).

 

Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus.  Tamehiro N., Hosaka T., Xu J., Hu H., Otake N. and Ochi K. Applied and Environmental Microbiology 69: 6412-6417 (2003).

 

An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Okamoto-Hosoya Y., Hosaka T. and Ochi K. Microbiology 149: 3299-3309 (2003).

 

Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). Okamoto S., Lezhava A., Hosaka T., Okamoto-Hosoya Y. and Ochi K. Journal of Bacteriology 185: 601-609 (2003).

 

Acetylacetoin synthase as a marker enzyme for detecting the 2,3-butanediol cycle. Ui S., Hosaka T., Mizutani K., Ohtsuki T. and Mimura A. J Biosci Bioeng 93: 248-251 (2002).

 

Characterization of the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase gene from Bacillus cereus YUF-4. Hosaka T., Ui S., Ohtsuki T., Mimura A., Ohkuma M. and Kudo T. J Biosci Bioeng 91: 539-544 (2001).

 

Separation and properties of two acetylacetoin reductases from Bacillus cereus YUF-4. Hosaka T., Ui S. and Mimura A. Biosci Biotechnol Biochem 63: 199-201 (1999).

 

Purification and properties of acetylacetoin synthase from Bacillus sp. YUF-4. Ui S., Hosaka T., Mizutani K. and Mimura A. Biosci Biotechnol Biochem 62: 795-797 (1998).

 

Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. Ui S., Hosaka T., Watanabe K. and Mimura A. J Ferment Bioeng 85: 79-83 (1998).